Thermal Properties of Side-Chain Phosphorus-Containing Epoxide Cured with Amine

KUO-CHUNG CHENG,^{1,2} SU-YUN YU,³ WEN-YEN CHIU^{3,4}

¹ Department of Chemical Engineering, National Taipei University of Technology, Taipei, 106, Taiwan

² Department of Chemical Engineering, Lunghaw Institute of Technology, Taoyuan, 333, Taiwan

³ Institute of Materials Science & Engineering, National Taiwan University, Taipei, 106, Taiwan

⁴ Department of Chemical Engineering, National Taiwan University, Taipei, 106, Taiwan

Received 31 March 2000; accepted 14 March 2001

ABSTRACT: Glycidyloxy diphenylphosphine oxide (GDPPO), a side-chain phosphoruscontaining monoepoxide, was prepared. The compound, GDPPO, was mixed with 4,4'diglycidylether of bisphenol A-type epoxy resin, DER 331. The reaction kinetics of the mixture, GDPPO–DER 331, cured with diethyltriamine (DETA), and the thermal decomposition properties of the thermosets were studied. For the GDPPO–DER 331– DETA curing systems, it was found that the activation energy of the curing reaction is 45.0 kJ/mol for the GDPPO–DETA system, and it decreases with the content of GDPPO. According to the method of Ozawa, the average apparent thermal decomposition activation energies of the thermosets with phosphorus-containing monoepoxide are from 138.5 to 178.1 kJ/mol, which are higher than that of the DER 331–DETA system (95.8 kJ/mol). However, the lower crosslinking density and gel fraction of the system with the phosphorus-containing monoepoxide, GDPPO, result in poor protection of the intumescent char during thermal decomposition; thus, the char yield and limiting oxygen index (LOI) of the cured specimens decrease with increasing GDPPO. © 2002 John Wiley & Sons, Inc. J Appl Polym Sci 83: 2741–2748, 2002; DOI 10.1002/app.10161

Key words: flame-retardance; thermosets; epoxy resins; degradation

INTRODUCTION

Epoxy thermosets are used in many industrial applications, such as in coatings, adhesives, composites, and encapsulation of microelectronic devices, due to their great versatility, low shrinkage, good chemical resistance, outstanding adhesion, and excellent electrical insulation.^{1–7} Many halogen-containing compounds are commonly applied as flame-retardants in epoxy resins by blending or chemical modification to improve the flame resistance. For example, tetrabromobisphenol A epoxy resins were successfully used as a flame-retardant in printed circuit boards and in encapsulation of IC packages.

However, epoxides with halogenated compounds will format noxious and corrosive fumes during thermal decomposition. Many phosphorus-containing epoxy resins and curing agents have been synthesized as alternate materials.^{8–20}

Correspondence to: W.-Y. Chiu.

Contract grant sponsor: National Science Council, Taiwan; contract grant number: NSC-87-2216-E-002-003.

Journal of Applied Polymer Science, Vol. 83, 2741–2748 (2002) © 2002 John Wiley & Sons, Inc.

Buckingham et al. synthesized phosphorylated flame-retardant curatives for epoxy resins.¹² Derouet et al. modified epoxy resins by reacting 4,4'diglycidylether of bisphenol A (DGEBA) with dialkyl (or aryl) phosphates.¹³ Liu et al. synthesized a phosphorus-containing epoxide, bis-glycidyloxy phenylphosphate (BGPP), and confirmed its flame-retardant properties.^{18–20} Wang et al. prepared a reactive heterocyclic phosphorus-containing diol to modify a DGEBA-type epoxide and showed that the flame retardancy, thermal stability, and glass transition temperature are improved by the rigid structure and pendant phosphorous group on the backbone.³

For increasing the mechanical properties and reducing the cost, the phosphorus-containing epoxy resins can also be blended with commercial epoxy resins. However, the effects of various compositions on the thermal properties of the thermosets are seldom reported. In previous work, we synthesized a main-chain phosphorus-containing epoxide, BGPP, then blended the product with various contents of a DGEBA-type epoxide and cured it with diethyltriamine (DETA). It was found that the BGPP–DETA system shows a relatively higher char yield and a limiting oxygen index (LOI) value of 29–31.²¹ Furthermore, in this study, we prepared side-chain phosphoruscontaining formulations by mixing glycidyloxy diphenylphosphine oxide (GDPPO) with different contents of DER 331. The curing reactions of the side-chain phosphorus-containing blended epoxy resins with DETA and the thermal properties of these cured specimens were investigated and compared to the system with the main-chain phosphorus-containing epoxide, BGPP.

EXPERIMENTAL

Synthesis of Side-chain Phosphorus-containing Epoxy Resin (GDPPO)

Glycidol (0.169 mol, ACROS, USA) was mixed with triethylamine (0.169 mol, ACROS) in 40 mL THF. This solution was cooled to 0°C; then, 0.3 g Cu_2Cl_2 was added. Diphenylphosphonic chloride (0.169 mol, ACROS) in 60 mL THF was added into the solution in dropwise for 30-min period, and the solution was reacted for 2 h at 0°C, then kept at room temperature for 2 days. The reaction can be shown as follows:

After being filtrated and stirred with an ice-cold NaOH solution (2 wt %), the reacted solution was extracted with ethyl acetate (Aldrich, USA) and dried on MgSO₄. Finally, the solution was filtered and the ethyl acetate removed and then purified by an LC column with EA/*n*-hexane (1/1) as the eluant.

Characterization of GDPPO

Infrared Spectroscopy

Infrared spectra for the compound, GDPPO, were observed by a Fourier transform infrared spectro-photometer (FTIR, Bio-Rad FTS-40).

NMR Spectroscopy

¹H-NMR and ³¹P-NMR spectra for diphenylphosphonic chloride and GDPPO were recorded with a Bruker DMX-400 SB FT-NMR.

Epoxide Equivalent Weight

The epoxy equivalent weight (EEW) of GDPPO was determined by the pyridinium chloride method described in the literature.²²

Thermal Analysis

Differential Scanning Calorimeter (DSC)

The blended resins, GDPPO with various contents of DER 331, were mixed with a curing agent, DETA, at a stoichiometric ratio. The heat of the mixture released during the cure was measured by a DSC (Perkin–Elmer, DSC-7) under various conditions.

Thermogravimetric Analysis (TGA)

The mixtures of the blended resin and the curing agent prepared as mentioned above were cured

Figure 1 IR spectrum of GDPPO.

first, then analyzed by TGA (Perkin–Elmer, TGA-7) under a nitrogen atmosphere.

LOI

The relative flammability of the cured specimen was determined by an LOI tester (Custom Scientific Instruments Inc., CS-178). The values of the LOI were correspondent to the minimum ratio of oxygen in the mixture of oxygen and nitrogen that will support flaming of the samples for 30 s.

Gel Fraction

The gel fraction of the cured epoxy resin was determined by solvent extraction. The ground

sample was extracted with THF under reflux for 48 h at 100°C. The unextracted portion was assigned to the gel fraction by weight.

RESULTS AND DISCUSSION

Characterization of Side-chain Phosphoruscontaining Monoepoxide, GDPPO

The FTIR spectra for the compound GDPPO are shown in Figure 1. The absorption peak at about 1023 cm⁻¹ indicates the \sim P-O $-CH_2 \sim$ group formed by the coupling reaction of glycidol with diphenylphosphonic chloride (DPPC), and the

Functional Group	Wavenumber (cm^{-1})	Intensity	Туре
P=0	1350-1175, 1250-1150	Very strong	Stretching vibration
Р—О	1080-1100	Weak	Stretching vibration
P—Ar.	1455 - 1425	Medium-strong	Ar. ring stretching vibration
Ar.	3080-3010	Medium	C—H vibration
	1575 - 1600	Strong	C==C
	770–690	Strong	Ring deformation
	860-810	Strong	Bending vibration
Oxirane ring	~ 916	Strong	Ring vibration

Table I Infrared Absorbency of GDPPO

Ar.: aromatic group.

Figure 2 ¹H-NMR spectrum of GDPPO.

other absorption peaks corresponding to different groups of the GDPPO are listed in Table I.

Figure 2 indicates the NMR spectrum for GD-PPO. The characterization data by ¹H-NMR are as follows:

 $\delta = 2.60 - 3.11$ ppm (oxiane-ring protons);

 δ = 3.90–4.31 ppm (~P––O––CH $_2 \sim$); and

 $\delta = 7.35 - 7.70$ ppm (aromatic protons).

A single peak, $\delta = 30.2$ ppm from the ³¹P-NMR spectrum, was found for GDPPO. However, the peak of the reactant, DPPC, is at 36.8 ppm. It is believed that the shifting of the phosphorus atom

resulted from the replacement of the electronwithdrawing chloride on the reactant, DPPC, by the group \sim O—CH₂. The chemical structure of GDPPO can be confirmed by those spectrum data. The EEW of GDPPO is 281, analyzed by titration.²²

Curing Kinetics

Figure 3 shows the IR spectrum of the GDPPO– DETA curing systems at the heating rate of 10° C/ min. The epoxy group (916 cm⁻¹) decreases with the temperature (time) and is consumed at about 150° C owing to the reaction between the monoep-

Figure 3 IR spectrum of GDPPO-DETA curing system.

Figure 4 DSC thermograms of GDPPO–DER 331– DETA curing systems at a heating rate of 10°C/min.

oxide, GDPPO, and DETA. Furthermore, the blended resins, GDPPO with various contents of DER 331, were cured with DETA at a stoichiometric ratio, and the DSC thermograms of the GDPPO–DER 331–DETA curing systems are shown in Figure 4. It was found that the temperature, $T_{\rm max}$, at which the heat flow reaches the maximum value decreases with increasing of GD-PPO as indicated in Table II, which indicates that GDPPO reacts with DETA more quickly than with DER 331.

The rate law of the curing reaction can be described as follows:

$$d\alpha/dt = k(1-\alpha)^n \tag{2}$$

Figure 5 Plot of $\ln(d\alpha/dt)$ versus $\ln(1 - \alpha)$ for GDP-PO-DER 331-DETA curing system (GDPPO/DER 331 = 40/60).

where k is the reaction rate constant; n, the reaction order; and α (EP), the epoxy conversion, which could be measured by the heat generation. Furthermore, the kinetic parameters, k and n, can be determined by plots of $\ln(d\alpha/dt)$ versus $\ln(1 - \alpha)$, such as in Figure 5.

Figure 6 shows the activation energy, E_a , for different curing systems. The activation energy is 45.0 kJ/mol for the GDPPO–DETA system, and this value is lower than that of the DER 331– DETA system (73.2 kJ/mol) and the main-chain phosphorus-containing diepoxide, BGPP, curing system (51.2 kJ/mol).²¹ For the GDPPO–DER 331–DETA curing system, as shown in Figure 6, the activation energy decreases with more GDPPO. It is believed that the mobility and reactivity of GDPPO are higher than those of BGPP or DER 331 due to GDPPO having a small molecular size and a flexible group, ~P–O–CH₂~.

Glass Transition Temperature

The glass transition temperatures of the thermosets determined by DSC are shown in Table II.

	GDPPO/DER 331 Molar Ratio				
Characteristics	0/100	40/60	60/40	80/20	100/0
$T_{\rm max}$ (°C) of curing by the DSC at 10°C/min	93	89	86	82	80
Reaction order of eq. (3)	1.1	1.1	1.1	1.0	1.0
T_{σ} (°C) of thermoset by the DSC at 10°C/min	108	54	67	52	64
Gel fraction of the cured polymer (wt %)	93	79	72	54	0
LOI of thermoset	19 - 22	21 - 22	20 - 21	18–19	17 - 19

Table II Characteristics of Various Curing Systems

Figure 6 Activation energy for various curing systems (GDPPO–DER 331–DETA).

The thermoset with GDPPO shows a decrease in the T_g . It may be caused by the flexible group, $\sim P-O-CH_2 \sim$, on GDPPO and the lower crosslinking density and gel fraction resulting from the monofunctional epoxide, GDPPO (see Table II).

TGA

The cured samples were analyzed by TGA at various heating rates under a nitrogen atmosphere. The DER 331–DETA thermoset exhibited a 5% weight loss at 345°C and decomposed at about 360°C as indicated in Figure 7 and Table III.

In the previous study for the main-chain phosphorus-containing diepoxide curing system, BGP-P-DETA, it was found that the char yield at 550°C is higher than that of the system without a phosphorus component, DER 331-DETA. On the contrary, for the GDPPO-DER 331-DETA system, the char yield decreases with an increasing content of the side-chain phosphorus-containing monoepoxide as shown in Table III.

This is perhaps because the lower crosslinking density and gel fraction of the system with the monoepoxide, GDPPO, result in poor protection of the intumescent char during thermal degradation. Figure 8 gives evidence for this explanation. Because the crosslinking density and gel fraction of the DER 331–DETA thermoset with a stoichiometric ratio of the curing agent are higher than those with a lower content of DETA, the char yield of the stoichiometric system is higher.

Decomposition Kinetics

According to the method of Ozawa,²³ the apparent thermal decomposition activation energy, E_d , can be determined from the TGA thermograms under various heating rates, such as in Figure 9, and the following equation:

$$E_d = -\frac{R}{b} \left[\frac{d \log \beta}{d(1/T)} \right] \tag{3}$$

where *R* is the gas constant; *b*, a constant (0.4567); and β , the heating rate (°C/min).

The decomposition activation energies for different compositions are shown in Figure 10. Because of the formation of intumescent char resulted from the pyrolysis of the phosphorus/ nitrogen-containing thermosets, the average activation energies of the GDPPO-DER 331-DETA system are from 138.5 to 178.1 kJ/mol, which are higher than that of the DER 331-DETA thermoset (95.8 kJ/mol).

LOI

For the main-chain phosphorus-containing epoxy thermoset, the polymer with the higher phosphorus content results in a higher LOI.²¹ On the contrary, because the lower crosslinking density

Figure 7 TGA thermograms of GDPPO–DER 331– DETA thermosets.

	GDPPO/DER 331 Molar Ratio					
Characteristics	0/100 345 16.9	40/60	60/40	80/20 290 10.6	100/0 270 8.13	
Temperature at 5% weight loss Residual weight (%) at 550°C		$\begin{array}{c} 305\\ 12.0 \end{array}$	$\begin{array}{c} 293 \\ 11.3 \end{array}$			
		BGP	P/DER 331 Mola	r Ratio		
Characteristics	0/100	40/60	60/40	80/20	100/0	
Temperature at 5% weight loss Residual weight (%) at 550°C	$\frac{345}{16.9}$	285 21.2	279 22.8	259 26.2	221 26.2	

Table III Weight-loss Characteristics Measured by TGA at 10°C/min Under Nitrogen Atmosphere

and gel fraction of the system with the monoepoxide, GDPPO, result in poor protection of intumescent char during thermal decomposition, the LOI of the thermoset decreases with increasing GDPPO, although the phosphorus content increases (see Table II).

CONCLUSIONS

The activation energy decreases with increasing GDPPO for the GDPPO–DER 331–DETA curing system. Since the formation of intumescent char resulted from the pyrolysis of the thermosets with

phosphorous/nitrogen components, the average activation energies of the GDPPO–DER 331–DETA system are from 138.5 to 178.1 kJ/mol, which are higher than that of the DER 331–DETA thermoset (95.8 kJ/mol). But the lower crosslinking density and gel fraction of the system with the monoepoxide, GDPPO, result in a decrease in the T_g , and the poor protection of intumescent char during thermal decomposition, the char yield, and the LOI decreases with increasing content of GDPPO.

The authors thank the National Science Council, Taiwan, for the financial support of this study under Contract NSC-87-2216-E-002-003.

Figure 8 TGA thermograms of DER 331–DETA thermosets for various contents of the curing agent.

Figure 9 TGA thermograms of thermosets at various heating rates (GDPPO/DER 331 = 40/60).

Figure 10 Apparent decomposition activation energies versus the decomposition conversion.

REFERENCES

- May, C. A. Epoxy Resins—Chemistry and Technology, 2nd ed.; Marcel Dekker: New York, 1988.
- Lee, H.; Neville, K. Hand Book of Epoxy Resin; McGraw-Hill: New York, 1967.
- 3. Wang, C. S.; Shieh, J. Y. Polymer 1998, 39, 5819.
- Wang, C. S.; Fritz, D. B.; Mendoza, A. Polym Mater Sci Eng 1988, 59, 763.
- 5. Wong, C. P. Adv Polym Sci 1988, 84, 63.
- Cheng, K. C.; Lai, K. C.; Chiu, W. Y. J Appl Polym Sci 1999, 71, 721.
- Cheng, K. C. J Polym Sci Polym Phys Ed 1998, 36, 2339.
- Fischer, R. G.; Calbick, C. J. U.S. Patent 5 084 546, 1992.
- Yamazaki, K.; Ryoshi, H.; Hori, T. U.S. Patent 5 096 980, 1992.
- Gamino, G.; Costa, L.; Martinasso, G. Polym Deg Stab 1989, 23, 359.
- 11. Maiti, S.; Banerjee, S.; Palit, S. K. Prog Polym Sci 1993, 18, 227.

- Buckingham, M. R.; Lindsay, A. J.; Stevenson, D. E.; Muller, G.; Morel, E.; Costes, B.; Henry, Y. Polym Deg Stab 1996, 54, 311.
- Derouet, D.; Morvan, F.; Brosse, J. C. J Appl Polym Sci 1996, 62, 1855.
- Mikroyannidis, J. A.; Kourtides, D. A. J Appl Polym Sci 1984, 29, 197.
- 15. Mikroyannidis, J. A.; Kourtides, D. A. Adv Chem Ser 1984, 208, 351.
- Chin, W. K.; Shau, M. D.; Tsai, W. C. J Polym Sci Polym Chem Ed 1995, 33, 373.
- Wang, T. S.; Yeh, J. F.; Shau, M. D. J Appl Polym Sci 1996, 59, 215.
- Liu, Y. L.; Hsiue, G. H.; Chiu, Y. S.; Jeng, R. J.; Perng, L. H. J Appl Polym Sci 1996, 61, 613.
- Liu, Y. L.; Hsiue, G. H.; Chiu, Y. S.; Jeng, R. J. J Appl Polym Sci 1996, 61, 1789.
- Liu, Y. L.; Hsiue, G. H.; Chiu, Y. S. J Polym Sci Polym Chem Ed 1997, 35, 565.
- Cheng, K. C.; Yu, S. Y.; Chiu, W. Y., for publication in J Appl Polym Sci.
- 22. Smith, I. T. Polymer 1961, 2, 95.
- 23. Ozawa, T. Bull Chem Soc Jpn 1968, 38, 1881.